Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
J Chem Theory Comput ; 19(10): 2973-2984, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2314675

RESUMO

All atom simulations can be used to quantify conformational properties of Intrinsically Disordered Proteins (IDP). However, simulations must satisfy convergence checks to ensure observables computed from simulation are reliable and reproducible. While absolute convergence is purely a theoretical concept requiring infinitely long simulation, a more practical, yet rigorous, approach is to impose Self Consistency Checks (SCCs) to gain confidence in the simulated data. Currently there is no study of SCCs in IDPs, unlike their folded counterparts. In this paper, we introduce different criteria for self-consistency checks for IDPs. Next, we impose these SCCs to critically assess the performance of different simulation protocols using the N terminal domain of HIV Integrase and the linker region of SARS-CoV-2 Nucleoprotein as two model IDPs. All simulation protocols begin with all-atom implicit solvent Monte Carlo (MC) simulation and subsequent clustering of MC generated conformations to create the representative structures of the IDPs. These representative structures serve as the initial structure for subsequent molecular dynamics (MD) runs with explicit solvent. We conclude that generating multiple short (∼3 µs) MD simulation trajectories─all starting from the most representative MC generated conformation─and merging them is the protocol of choice due to (i) its ability to satisfy multiple SCCs, (ii) consistently reproducing experimental data, and (iii) the efficiency of running independent trajectories in parallel by harnessing multiple cores available in modern GPU clusters. Running one long trajectory (greater than 20 µs) can also satisfy the first two criteria but is less desirable due to prohibitive computation time. These findings help resolve the challenge of identifying a usable starting configuration, provide an objective measure of SCC, and establish rigorous criteria to determine the minimum length (for one long simulation) or number of trajectories needed in all-atom simulation of IDPs.


Assuntos
COVID-19 , Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Conformação Proteica , SARS-CoV-2 , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA